Sean Liu | CEO

Take a break and read all about it

關於 Andrej Karpathy 的 Intro to Large Language Models 的一些筆記

這幾天真的是非常的忙,總算在週末時騰出了些時間來看看 Andrej Karpathy 近期非常火的一段 YouTube,如果說他之前在微軟的活動上所進行的那場 State of GPT 是一場對開發者講述什麼是 LLM 的經典演說的話,那他這一次這段時長一小時的分享影片就是一場面向一般大眾介紹什麼是 LLM 的經典。 一個小時的內容全部都是非技術介紹,涵蓋了 #模型推理、#模型訓練、#模型微調 以及 LLM 的發展趨勢,以及安全挑戰。影片的內容非常的新,基本上還有涵蓋到了近一個月在 LLMs 上的相關發展,有些關於 LLMs 的觀念與知識我也是因為看了這次的分享才知道,同時也釐清了一些我對 LLMs 原本不甚瞭解的地方。 Andrej 本人真的是非常擅長簡化複雜的問題,Andrej 還說影片是他在感恩節假期的度假飯店中進行錄製的。而影片的內容大都是他最近在 #人工智慧安全高峰會 上的演講內容,不過為了讓影片內容去適合大多數一般的聽眾,他對原本演講的內容進行了一些微調。 在影片的第一章節中他主要是對大模型的整體概念進行了一些解釋。Andrej 解釋 LLM 在本質上其實就是兩個檔案,一個是 #參數檔案,一個是包含執行這些參數的程式碼檔案。前者是組成這個類神經網路的權重,後者是用來部署這個類神經網路的程式碼,可以是用 C 語言或者是其他任何程式語言進行撰寫。有了這兩個檔案,搭配上一台筆記型電腦,我們就不需要任何網路連線和其他東西就可以與這個 LLM 進行交流。 比如要求 LLM 寫首詩,他就開始為你生成文字。那麼接下來的問題就是,參數是從哪裡來的呢? 這就要提到模型訓練了。本質上來說,LLM 訓練就是對網路資料進行 #有損的壓縮。比如大約 10TB 的文字,這就需要一個巨大的 GPU cluster 來完成。以 7B 參數的 GPT-3 為例,要進行預訓練就需要 6,000 張

Read More »

關於 Claude 2.1 我只是略懂

主要的亮點 API Tools API Tools 使用是 Claude 2.1 的一個新beta功能,它允許 Claude 整合到用戶現有的流程、產品和 API 中。這意味著 Claude 不僅僅是一個獨立的 AI model,而是可以成為用戶現有工作流程的一部分,從而提高日常操作的效率和效果。 擴展互操作性:透過這個功能,Claude 允許開發者撰寫 #自定義函數、API、搜尋網際網路來源,並從 Private Knowledge Base 中檢索資料做 RAG。這意味著 Claude 可以與更廣泛的資料源和工具進行互動,明顯看出 Anthropic 有意在 Agents 領域上大力的推進。使用者在執行與 Claude model 進行互動的過程中可定義上述提及的多項工具,model 會根據使用者輸入的語料與脈絡資訊來決定要啟用哪些工具去輔助模型推論的進行。 這個功能讓 Claude 可以執行多種操作 開發者體驗 Console experience 為了簡化開發者的 UX,Claude 的 developer console 經過了重構。這包括使 prompt engineering 更加快速和簡單,從而加速學習和迭代過程。 New Workbench 開發者可以在 playground 的環境中迭代提示詞測試。開發者可以建立多個提示,並在不同的專案間輕鬆的轉換,同時進行的任何校正都會被保存下來,以保留

Read More »

The introduction of Llama-2.

1. Development and Release of Llama 2: 2. Capabilities of Large Language Models (LLMs): 3. Training Methodology of LLMs: 4. Comparison with Other Models: 5. Introduction of Llama 2 and Llama 2-Chat: 6. Novel Observations: 7. Models Being Released: 8. Release Considerations: 9. Paper Structure: The rest of the paper discusses the pre-training and fine-tuning

Read More »

What is Audio Spectrogram?

An audio spectrogram provides an intuitive representation of the frequency spectrum of an audio signal as it changes over time. For a segment of audio data over a period of time, it can be abstracted into a finite-length audio spectrogram. An audio spectrogram has a 2D representation, which can be visualized as a flat image.

Read More »

What is pre-trained visual encoders?

Understanding ‘Encoders’ Visual Encoders Training Neural Networks Pre-trained Encoders Common Datasets for Pre-training Types of Pre-trained Visual Encoders Fine-tuning & Transfer Learning Applications Challenges & Considerations Conclusion Pre-trained visual encoders leverage prior knowledge from extensive datasets to offer a head start when tackling new visual tasks. They encapsulate a form of “transfer learning,” allowing models

Read More »

What is “Learnable interface layer”?

Let’s unpack the concept of a “learnable interface layer” step by step, especially in the context of AI, language models, and Transformer architectures: Basic Understanding of Neural Networks Neural networks consist of layers of interconnected nodes (or neurons). Each connection has a weight, which is adjusted during training to minimize the difference between the predicted

Read More »

What is “Multi-Modality” in LLMs?

Basic Understanding of Modality In the context of AI, a “modality” refers to a specific type of data or way of interacting. For example, text, images, audio, and videos are different modalities. Each modality offers a unique representation of information. What is Multi-Modality? Multi-modality involves combining information from multiple modalities to improve AI’s understanding, representation,

Read More »